7 research outputs found

    Gaussian Processes for Machine Learning in Robotics

    Get PDF
    Menci贸n Internacional en el t铆tulo de doctorNowadays, machine learning is widely used in robotics for a variety of tasks such as perception, control, planning, and decision making. Machine learning involves learning, reasoning, and acting based on the data. This is achieved by constructing computer programs that process the data, extract useful information or features, make predictions to infer unknown properties, and suggest actions to take or decisions to make. This computer program corresponds to a mathematical model of the data that describes the relationship between the variables that represent the observed data and properties of interest. The aforementioned model is learned based on the available training data, which is accomplished using a learning algorithm capable of automatically adjusting the parameters of the model to agree with the data. Therefore, the architecture of the model needs to be selected accordingly, which is not a trivial task and usually depends on the machine-learning engineer鈥檚 insights and past experience. The number of parameters to be tuned varies significantly with the selected machine learning model, ranging from two or three parameters for Gaussian processes (GP) to hundreds of thousands for artificial neural networks. However, as more complex and novel robotic applications emerge, data complexity increases and prior experience may be insufficient to define adequate mathematical models. In addition, traditional machine learning methods are prone to problems such as overfitting, which can lead to inaccurate predictions and catastrophic failures in critical applications. These methods provide probabilistic distributions as model outputs, allowing for estimating the uncertainty associated with predictions and making more informed decisions. That is, they provide a mean and variance for the model responses. This thesis focuses on the application of machine learning solutions based on Gaussian processes to various problems in robotics, with the aim of improving current methods and providing a new perspective. Key areas such as trajectory planning for unmanned aerial vehicles (UAVs), motion planning for robotic manipulators and model identification of nonlinear systems are addressed. In the field of path planning for UAVs, algorithms based on Gaussian processes that allow for more efficient planning and energy savings in exploration missions have been developed. These algorithms are compared with traditional analytical approaches, demonstrating their superiority in terms of efficiency when using machine learning. Area coverage and linear coverage algorithms with UAV formations are presented, as well as a sea surface search algorithm. Finally, these algorithms are compared with a new method that uses Gaussian processes to perform probabilistic predictions and optimise trajectory planning, resulting in improved performance and reduced energy consumption. Regarding motion planning for robotic manipulators, an approach based on Gaussian process models that provides a significant reduction in computational times is proposed. A Gaussian process model is used to approximate the configuration space of a robot, which provides valuable information to avoid collisions and improve safety in dynamic environments. This approach is compared to conventional collision checking methods and its effectiveness in terms of computational time and accuracy is demonstrated. In this application, the variance provides information about dangerous zones for the manipulator. In terms of creating models of non-linear systems, Gaussian processes also offer significant advantages. This approach is applied to a soft robotic arm system and UAV energy consumption models, where experimental data is used to train Gaussian process models that capture the relationships between system inputs and outputs. The results show accurate identification of system parameters and the ability to make reliable future predictions. In summary, this thesis presents a variety of applications of Gaussian processes in robotics, from trajectory and motion planning to model identification. These machine learning-based solutions provide probabilistic predictions and improve the ability of robots to perform tasks safely and efficiently. Gaussian processes are positioned as a powerful tool to address current challenges in robotics and open up new possibilities in the field.El aprendizaje autom谩tico ha revolucionado el campo de la rob贸tica al ofrecer una amplia gama de aplicaciones en 谩reas como la percepci贸n, el control, la planificaci贸n y la toma de decisiones. Este enfoque implica desarrollar programas inform谩ticos que pueden procesar datos, extraer informaci贸n valiosa, realizar predicciones y ofrecer recomendaciones o sugerencias de acciones. Estos programas se basan en modelos matem谩ticos que capturan las relaciones entre las variables que representan los datos observados y las propiedades que se desean analizar. Los modelos se entrenan utilizando algoritmos de optimizaci贸n que ajustan autom谩ticamente los par谩metros para lograr un rendimiento 贸ptimo. Sin embargo, a medida que surgen aplicaciones rob贸ticas m谩s complejas y novedosas, la complejidad de los datos aumenta y la experiencia previa puede resultar insuficiente para definir modelos matem谩ticos adecuados. Adem谩s, los m茅todos de aprendizaje autom谩tico tradicionales son propensos a problemas como el sobreajuste, lo que puede llevar a predicciones inexactas y fallos catastr贸ficos en aplicaciones cr铆ticas. Para superar estos desaf铆os, los m茅todos probabil铆sticos de aprendizaje autom谩tico, como los procesos gaussianos, han ganado popularidad. Estos m茅todos ofrecen distribuciones probabil铆sticas como salidas del modelo, lo que permite estimar la incertidumbre asociada a las predicciones y tomar decisiones m谩s informadas. Esto es, proporcionan una media y una varianza para las respuestas del modelo. Esta tesis se centra en la aplicaci贸n de soluciones de aprendizaje autom谩tico basadas en procesos gaussianos a diversos problemas en rob贸tica, con el objetivo de mejorar los m茅todos actuales y proporcionar una nueva perspectiva. Se abordan 谩reas clave como la planificaci贸n de trayectorias para veh铆culos a茅reos no tripulados (UAVs), la planificaci贸n de movimientos para manipuladores rob贸ticos y la identificaci贸n de modelos de sistemas no lineales. En el campo de la planificaci贸n de trayectorias para UAVs, se han desarrollado algoritmos basados en procesos gaussianos que permiten una planificaci贸n m谩s eficiente y un ahorro de energ铆a en misiones de exploraci贸n. Estos algoritmos se comparan con los enfoques anal铆ticos tradicionales, demostrando su superioridad en t茅rminos de eficiencia al utilizar el aprendizaje autom谩tico. Se presentan algoritmos de recubrimiento de 谩reas y recubrimiento lineal con formaciones de UAVs, as铆 como un algoritmo de b煤squeda en superficies marinas. Finalmente, estos algoritmos se comparan con un nuevo m茅todo que utiliza procesos gaussianos para realizar predicciones probabil铆sticas y optimizar la planificaci贸n de trayectorias, lo que resulta en un rendimiento mejorado y una reducci贸n del consumo de energ铆a. En cuanto a la planificaci贸n de movimientos para manipuladores rob贸ticos, se propone un enfoque basado en modelos gaussianos que permite una reducci贸n significativa en los tiempos de c谩lculo. Se utiliza un modelo de procesos gaussianos para aproximar el espacio de configuraciones de un robot, lo que proporciona informaci贸n valiosa para evitar colisiones y mejorar la seguridad en entornos din谩micos. Este enfoque se compara con los m茅todos convencionales de planificaci贸n de movimientos y se demuestra su eficacia en t茅rminos de tiempo de c谩lculo y precisi贸n de los movimientos. En esta aplicaci贸n, la varianza proporciona informaci贸n sobre zonas peligrosas para el manipulador. En cuanto a la identificaci贸n de modelos de sistemas no lineales, los procesos gaussianos tambi茅n ofrecen ventajas significativas. Este enfoque se aplica a un sistema de brazo rob贸tico blando y a modelos de consumo energ茅tico de UAVs, donde se utilizan datos experimentales para entrenar un modelo de proceso gaussiano que captura las relaciones entre las entradas y las salidas del sistema. Los resultados muestran una identificaci贸n precisa de los par谩metros del sistema y la capacidad de realizar predicciones futuras confiables. En resumen, esta tesis presenta una variedad de aplicaciones de procesos gaussianos en rob贸tica, desde la planificaci贸n de trayectorias y movimientos hasta la identificaci贸n de modelos. Estas soluciones basadas en aprendizaje autom谩tico ofrecen predicciones probabil铆sticas y mejoran la capacidad de los robots para realizar tareas de manera segura y eficiente. Los procesos gaussianos se posicionan como una herramienta poderosa para abordar los desaf铆os actuales en rob贸tica y abrir nuevas posibilidades en el campo.Programa de Doctorado en Ingenier铆a El茅ctrica, Electr贸nica y Autom谩tica por la Universidad Carlos III de MadridPresidente: Juan Jes煤s Romero Cardalda.- Secretaria: Mar铆a Dolores Blanco Rojas.- Vocal: Giuseppe Carbon

    Implementaci贸n de algoritmos de planificaci贸n de trayectorias para robots m贸viles en entornos complejos

    Get PDF
    La planificaci贸n de trayectorias en rob贸tica es un problema que ha recibido especial atenci贸n en los 煤ltimos a帽os, debido a que los robots comienzan a estar muy presentes en la industria y en los hogares. Aunque estos robots pueden ser muy diferentes unos de otros, el problema de obtener trayectorias de un punto a otro del espacio evitando obst谩culos es similar en todos ellos, ya sea un robot aspirador dom茅stico, como una Roomba, o un robot de rescate en entornos peligrosos. Con la finalidad de aportar soluciones a este problema, este trabajo fin de grado tiene como objetivo principal la implementaci贸n y el estudio de diferentes algoritmos de planificaci贸n para obtener trayectorias v谩lidas. Para ello es necesario disponer de (i) un modelo del entorno sobre el cual realizar la tarea de planificaci贸n, (ii) un origen y (iii) un destino. En el TFG se comparan tres algoritmos con diferentes caracter铆sticas y comportamientos. Por un lado, se ha estudiado el algoritmo A*, basado en b煤squeda en grafos y muy utilizado en la actualidad. Por otro lado, como alternativas con menor coste de computaci贸n que el A*, se han estudiado el algoritmo basado en muestreo RRT, y una modificaci贸n anytime-optimal del mismo, el RRT*. Con la finalidad de evaluar los diferentes algoritmos de planificaci贸n propuestos, se realizan ensayos en entornos de diferente tama帽o y complejidad y se comparan los resultados obtenidos. Estos ensayos nos permiten observar las ventajas y desventajas de los algoritmos estudiados, pudiendo elegir el algoritmo id贸neo para cada situaci贸n. Por 煤ltimo, en el TFG se realiza una implementaci贸n en un robot real mediante la plataforma ROS.<br /

    FM2 path planner for UAV applications with curvature constraints: a comparative analysis with other planning approaches

    Get PDF
    This paper studies the Fast Marching Square (FM2) method as a competitive path planner for UAV applications. The approach fulfills trajectory curvature constraints together with a significantly reduced computation time, which makes it overperform with respect to other planning methods of the literature based on optimization. A comparative analysis is presented to demonstrate how the FM2 approach can easily adapt its performance thanks to the introduction of two parameters, saturation a and exponent b, that allow a flexible configuration of the paths in terms of curvature restrictions, among others. The main contributions of the method are twofold: first, a feasible path is directly obtained without the need of a later optimization process to accomplish curvature restrictions; second, the computation speed is significantly increased, up to 220 times faster than other optimization-based methods such as, for instance, Dubins, Euler鈥揗umford Elastica and Reeds鈥揝hepp. Simulation results are given to demonstrate the superiority of the method when used for UAV applications in comparison with the three previously mentioned methods.This research was funded by the EUROPEAN COMMISSION: Innovation and Networks Executive Agency (INEA), grant number 861696-LABYRINTH

    Coverage strategy for target location in marine environments using fixed-wing UAVs

    Get PDF
    In this paper, we propose a coverage method for the search of lost targets or debris on the ocean surface. The OSCAR data set is used to determine the marine currents and the differential evolution genetic filter is used to optimize the sweep direction of the lawnmower coverage and get the sweep angle for the maximum probability of containment. The position of the target is determined by a particle filter, where the particles are moved by the ocean currents and the final probabilistic distribution is obtained by fitting the particle positions to a Gaussian probability distribution. The differential evolution algorithm is then used to optimize the sweep direction that covers the highest probability of containment cells before the less probable ones. The algorithm is tested with a variety of parameters of the differential evolution algorithm and compared to other popular optimization algorithms.This research was funded by the European Commission: Innovation and Networks Executive Agency (INEA), through the European H2020 LABYRINTH project. Grant agreement H2020-MG-2019-TwoStages-861696

    Multi UAV coverage path planning in urban environments

    Get PDF
    This article belongs to the Special Issue Efficient Planning and Mapping for Multi-Robot Systems.Coverage path planning (CPP) is a field of study which objective is to find a path that covers every point of a certain area of interest. Recently, the use of Unmanned Aerial Vehicles (UAVs) has become more proficient in various applications such as surveillance, terrain coverage, mapping, natural disaster tracking, transport, and others. The aim of this paper is to design efficient coverage path planning collision-avoidance capable algorithms for single or multi UAV systems in cluttered urban environments. Two algorithms are developed and explored: one of them plans paths to cover a target zone delimited by a given perimeter with predefined coverage height and bandwidth, using a boustrophedon flight pattern, while the other proposed algorithm follows a set of predefined viewpoints, calculating a smooth path that ensures that the UAVs pass over the objectives. Both algorithms have been developed for a scalable number of UAVs, which fly in a triangular deformable leader-follower formation with the leader at its front. In the case of an even number of UAVs, there is no leader at the front of the formation and a virtual leader is used to plan the paths of the followers. The presented algorithms also have collision avoidance capabilities, powered by the Fast Marching Square algorithm. These algorithms are tested in various simulated urban and cluttered environments, and they prove capable of providing safe and smooth paths for the UAV formation in urban environments.This research was funded by the EUROPEAN COMMISSION: Innovation and Networks Executive Agency (INEA), through the European H2020 LABYRINTH project. Grant agreement H2020-MG-2019-TwoStages-861696

    Path planning and collision risk management strategy for multi-UAV systems in 3D environments

    Get PDF
    This article belongs to the Special Issue Smooth Motion Planning for Autonomous VehiclesMulti-UAV systems are attracting, especially in the last decade, the attention of researchers and companies of very different fields due to the great interest in developing systems capable of operating in a coordinated manner in complex scenarios and to cover and speed up applications that can be dangerous or tedious for people: search and rescue tasks, inspection of facilities, delivery of goods, surveillance, etc. Inspired by these needs, this work aims to design, implement and analyze a trajectory planning and collision avoidance strategy for multi-UAV systems in 3D environments. For this purpose, a study of the existing techniques for both problems is carried out and an innovative strategy based on Fast Marching Square驴for the planning phase驴and a simple priority-based speed control驴as the method for conflict resolution驴is proposed, together with prevention measures designed to try to limit and reduce the greatest number of conflicting situations that may occur between vehicles while they carry out their missions in a simulated 3D urban environment. The performance of the algorithm is evaluated successfully on the basis of certain conveniently chosen statistical measures that are collected throughout the simulation runs.This research was funded by the EUROPEAN COMMISSION: Innovation and Networks Executive Agency (INEA), through the European H2020 LABYRINTH project. Grant agreement H2020-MG-2019-TwoStages-861696

    Fast Marching Square-based planning and conflict management strategy for UAVs in large 3D environments

    No full text
    [Resumen] Los sistemas multi UAV se alzan en la actualidad como una soluci贸n potente a la hora de desempe帽ar y agilizar tareas que pueden resultar peligrosas o tediosas para las personas: tareas de b煤squeda y rescate, inspecci贸n y vigilancia de instalaciones, entrega de mercanc铆as, tareas de agricultura y conservaci贸n de la vida silvestre, etc. En este contexto, este trabajo propone una estrategia r谩pida de planicaci贸n de trayectorias en entornos 3D de grandes dimensiones para UAVs basada en Fast Marching Square y un sencillo y eficiente control de velocidad basado en prioridades como m茅todo de resoluci贸n de conflictos entre veh铆culos. El rendimiento del algoritmo se eval煤a en base a ciertas medidas estad铆sticas recogidas convenientemente a lo largo de simulaciones.[Abstract] Multi-UAV systems are currently emerging as a powerful solution to perform and speed up tasks that can be dangerous or tedious for people: search and rescue tasks, inspection and surveillance of facilities, delivery of goods, agriculture and wildlife conservation tasks, etc. In this context, this work proposes a fast trajectory planning strategy in large 3D environments for UAVs based on Fast Marching Square and a simple and efficient priority-based speed control method for resolving conflicts between vehicles. The performance of the algorithm is evaluated based on certain statistical measures collected throughout simulations.Comunidad de Madrid; S2018/NMT-433
    corecore